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Cartagena de Indias - Colombia

Septiembre 9 - 12, 2020

Expansiveness, Shadowing and Markov Partition
for Anosov Families

Authors: Jeovanny Muentes Acevedo, Raquel Ribeiro
UNIVERSIDAD TECNOLÓGICA DE BOLÍVAR
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Abstract: We study Anosov families which are sequences of diffeomorphisms along com-
pact Riemannian manifolds such that the tangent bundle split into expanding and con-
tracting subspaces. In this paper we prove that a certain class of Anosov families: admit
canonical coordinates, are expansive, satisfy the shadowing property, and exhibit a Mar-
kov partition.
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Introduction
An Anosov family is a (biinfinite) sequence of diffeomorphisms along a sequence of

compact Riemannian manifolds, with an invariant sequence of splittings of the tangent
bundle into expanding and contracting subspaces, and with a uniform upper bound for
the contraction and lower bound for the expansion.

Anosov families were introduced by P. Arnoux and A. Fisher in [11], motivated by ge-
neralizing the notion of Anosov diffeomorphisms. The authors concentrated their studies
on linear Anosov families on the two-torus. The first goal was to get a natural notion of
completion for the colletion of the set of all orientation-preserving linear Anosov diffe-
omorphisms on the two-torus (see [10, 11]). Authors have been study Anosov families.
Young [15] proved that families consisting of C1+1 perturbations of an Anosov diffeo-
morphism of class C2 are Anosov families. Recently, Muentes, studied in his doctoral
thesis, [2, 3, 4, 5], the Stable and Unstable Manifold Theorem for Anosov family and the
stability structural of Anosov families on compact Riemannian manifolds. Ribeiro et al.
in [6, 7, 8, 9] studied severals types of shadowing.

In [1] we will study some properties related to hyperbolicity in the Anosov families:
expansiveness, Shadowing and Markov Partition (see [12, 13, 14]).
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